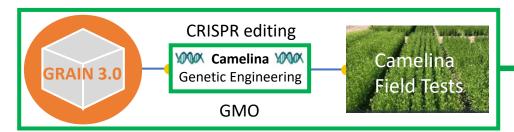


Breakthroughs in Plant Based PHA Bioplastic Production

Kristi Snell, PhD CSO and VP of Research www.yield10bio.com

Safe Harbor Statement*


The statements made by Yield10 Bioscience, Inc. (the "Company," "we," "our" or "us") herein regarding the Company and its business may be forward-looking in nature and are made pursuant to the safe harbor provisions of the Private Securities Litigation Reform Act of 1995. Forward-looking statements describe the Company's future plans, projections, strategies and expectations, including statements regarding future results of operations and financial position, business strategy, prospective products and technologies, expectations related to research and development activities, timing for receiving and reporting results of field tests and likelihood of success, and objectives of the Company for the future, and are based on certain assumptions and involve a number of risks and uncertainties, many of which are beyond the control of the Company, including, but not limited to, the risks detailed in the Company's Annual Report on Form 10-K for the year ended December 31, 2021 and other reports filed by the Company with the Securities and Exchange Commission (the "SEC"). Forward-looking statements include all statements which are not historical facts and can generally be identified by terms such as anticipates, believes, could, estimates, intends, may, plans, projects, should, will, would, or the negative of those terms and similar expressions.

Because forward-looking statements are inherently subject to risks and uncertainties, some of which cannot be predicted or quantified and may be beyond the Company's control, you should not rely on these statements as predictions of future events. Actual results could differ materially from those projected due to our history of losses, lack of market acceptance of our products and technologies, the complexity of technology development and relevant regulatory processes, market competition, changes in the local and national economies, and various other factors. All forward-looking statements contained herein speak only as of the date hereof, and the Company undertakes no obligation to update any forward-looking statements, whether to reflect new information, events or circumstances after the date hereof or otherwise, except as may be required by law.

Yield10's Trait Factory and Business Models

From Crop Science to \$200 Billion Total Addressable Market

Technology Platform - "Trait Factory"1

Camelina Seed Products

1. Feedstock Oil (Biofuel)

2. Omega-3 Oil (EPA+DHA)

3. PHA Bioplastics

Trait Licensing²

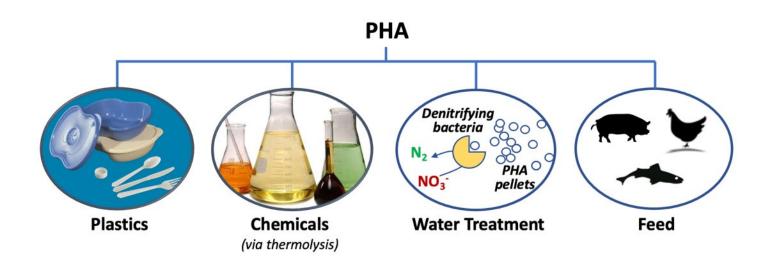
¹21 Patent Families Pending

²Research License Agreements, 3rd party R&D to create option value for Yield10 gene traits on over 400 million acres of major crops (soybean, corn, canola, etc.)

Why Camelina?

- Promising oilseed crop
 - seed oil levels ~ 40% of seed weight
 - does not outcross with canola
- Excellent platform crop for novel high value seed products
- Both spring and winter varieties
 - winter varieties, potential use as cover crop for corn and soybean acres
- Camelina producing specialty products: value proposition for farmer

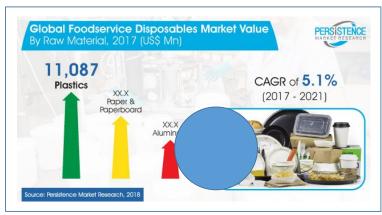
Greenhouse grown Camelina



Camelina field plots at flowering

Polyhydroxyalkanoate (PHA) Biomaterials

- Renewable, biodegradable class of biomaterials produced by some microorganisms as reservoir of stored carbon and energy
- Fully degradable in all biologically active environments
- Unique features of polymers will allow use in multiple applications



PHA Bioplastics Opportunity

Plastics: Global Production, 350 Million TPY, 4% Growth Rate, ~\$720 Billion by 2025

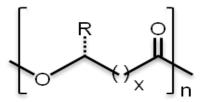
- Increasing demand for biodegradable or bio-sourced plastics
- Low-cost crop PHA bioplastics –functionally replace over 50% of todays plastics
- Barriers: Market adoption has been severely restricted by high cost
 - Production by fermentation: cost too high for most applications

A. Current Materials

B. PHA Replacements¹

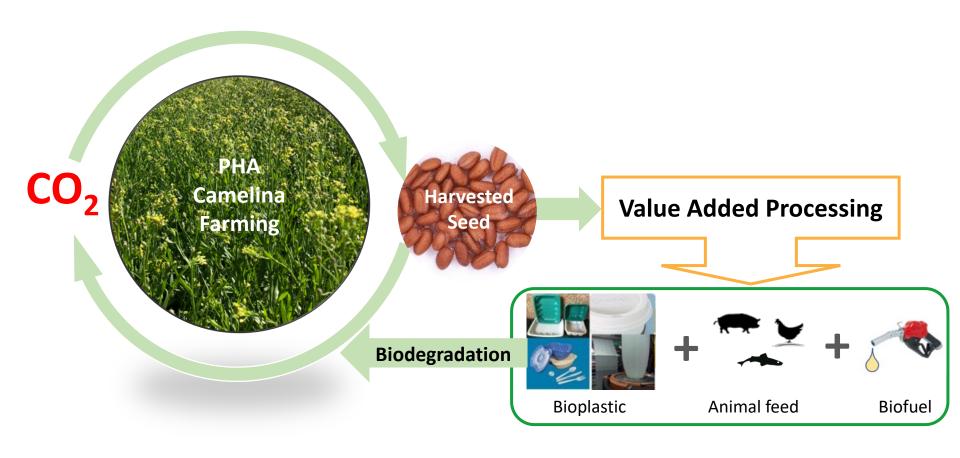
Fermentation PHA products

- Demonstrated functionality
- But 3- 5x more expensive

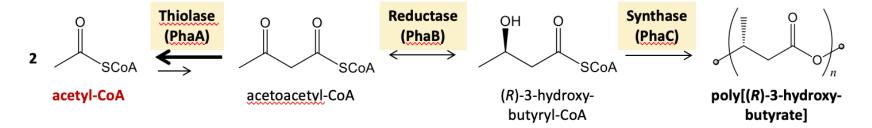


PHA Camelina

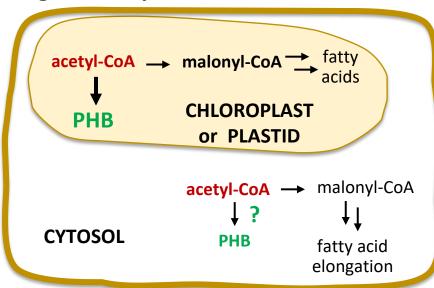
Mission:


Low-cost, large-scale,
Carbon Negative,
Zero Waste Bioplastics
produced in Camelina seeds

PHA Bioplastics


Goal: Carbon Negative - Zero Waste Bioplastics

Yield10 genetically programmed Camelina to produce PHA Bioplastics in the seed

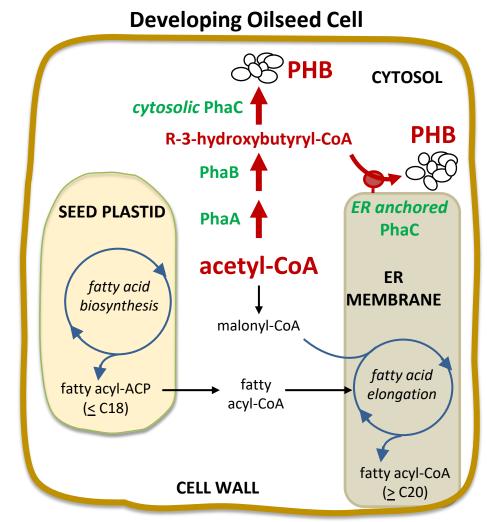


PHB Pathway Well Suited to Oilseeds

Native bacterial PHB biosynthetic pathway

Engineered plant cell

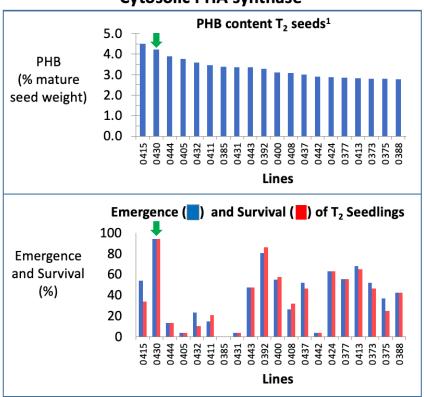
- Production in chloroplasts/seed plastids has yielded high levels of PHB in plants, but often with impaired growth¹
- Little reported success with cytosolic production (highest reported level 0.34% dry cell weight²)


¹Yield10 reference for production of PHB in Camelina seed plastids, Malik et al., 2015, *Plant Biotechnol. J.* 13, 675. ²Production in cytosol of cotton fibers, John & Keller, 1996, *P. Natl. Acad. Sci. USA.* 93, 12768.

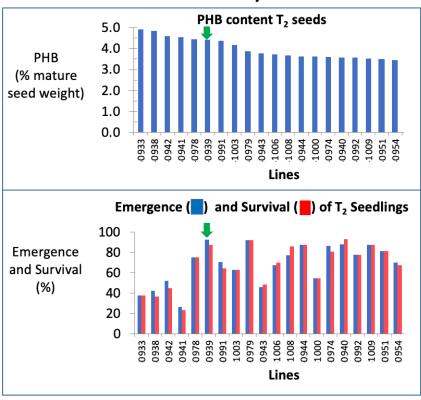
Revisit Production of PHB in Cytosol of Seed

Capture portion of acetyl-CoA in cytosol of seed for production of PHB

- Two genetic constructs
 - Construct 1: All enzymes targeted to cytosol
 - Construct 2: PhaA, PhaB targeted to cytosol; PhaC targeted to cytosolic face of endoplasmic reticulum (ER)
- Seed-specific expression constructs transformed into Camelina, lines isolated

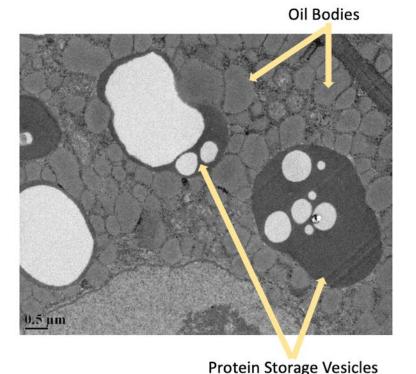


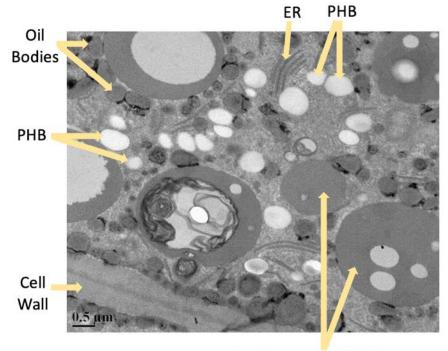
T₂ Seed PHB Content, Survival of Seedlings


Second generation seeds: 14x previously reported¹ highest level of cytosolic PHB

Some lines with good emergence & survival contained > 4% PHB (mature seed weight)

Cytosolic PHA synthase

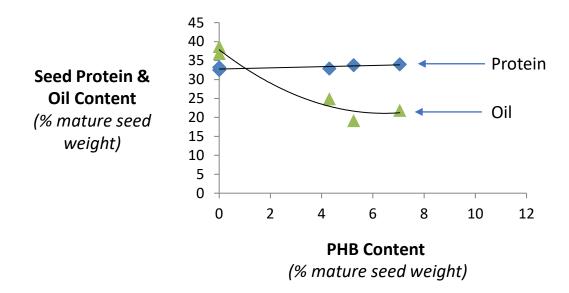

ER anchored PHA synthase


PHB Polymer Accumulates as Granules in Seed

Transmission electron microscopy (TEM) of cotyledon in imbibed seeds

Wild-type control

ER targeted synthase line



Protein Storage Vesicles

PHB Produced at Expense of Oil

Seed Oil and Protein Content

(from greenhouse growth of homozygous lines)

PHB has more value than oil

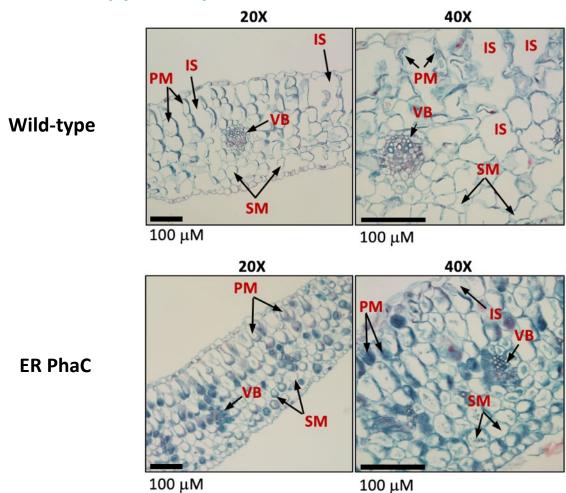
Looking for genes to increase carbon to boost oil using GRAIN modeling platform

Seedlings of Cytosolic PHB Producers

Cytosolic PHB production in seeds → healthy seedlings with narrow cotyledons

Wild-type

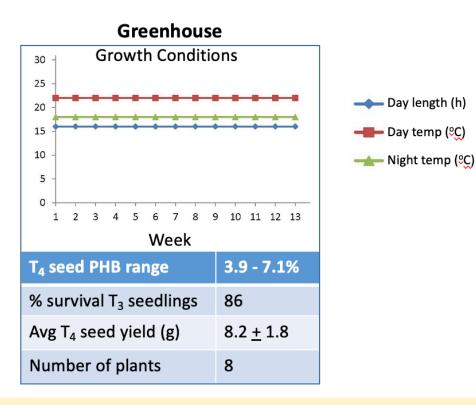
Cytosolic PhaC 4.5% PHB 53% emergence 33% survival

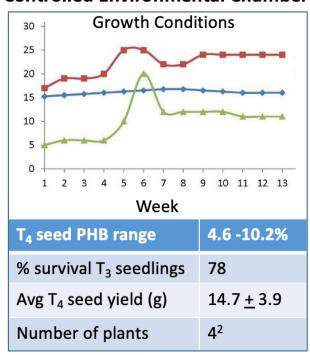

ER PhaC 4.4% PHB 92% emergence 87% survival

Pursued only ER PhaC lines in later generations. PHB production more stable in ER PhaC lines.

Seedlings of Cytosolic PHB Producers

Light microscopy of cotyledons


Intercellular spaces significantly reduced in cotyledons of PHB producing lines


PHB Production in Different Growth Conditions

Lines grown in greenhouse and controlled environmental chamber programmed to simulate average spring growth conditions¹

Results for best line shown

Controlled Environmental Chamber

Up to 10.2% PHB obtained in seeds of homozygous line in chamber 30X highest previously reported level³

¹Temperature settings in controlled environmental chamber adapted from average weekly historical data between early May & late July for Saskatoon, Saskatchewan, Canada. ²Size of growth chamber limited number of replicates. ³Production in cytosol of cotton fibers 0.34% dry cell weight, John & Keller, 1996, P. Natl. Acad. Sci. USA. 93, 12768.

Field Trials of Cytosolic PHB Producers

2020 - replicated field plots, line sorting

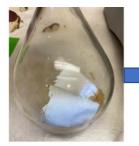
PHA Camelina plants at 2020 U.S. field test site 6% PHB produced in best line

2021 - 0.2 acre seed scale up

Drone photo, 0.2 acre U.S. scale up site Plants produced 6% PHB

2022 – Planting at acre-scale for larger scale sample production

seed processing, product prototyping, sampling & other business development activities


Small scale seed processing from field

Seed crushing with oil press, removal of oil

PHB extraction

PHB precipitation

Prototype PHA Camelina products

Seed oil

Protein rich meal

PHA Development Program Status

- Developed new technology solution to produce PHA in Camelina
 - Patent application in 2019
- Conducted field tests of PHA Camelina in 2020 and 2021 seasons
 - Planting at acre-scale in 2022
- Proof-of-concept milestone for producing PHA in field grown Camelina achieved
 - Up to ~6% PHB in mature seed
- Elite PHA line development ongoing
 - Goal systematically increase PHA seed content to increase harvest value
- Up Next....
 - Engineering PHB copolymers

PHA Camelina plants at 2020 U.S. field test site

Sample PHA resin pellets produced by Metabolix

Questions?

Contact info: snell@yield10bio.com

